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1. Introduction

The use of neural networks for style transfer has resulted
in numerous practical applications ranging from digital art
(sold for around half a million dollars) to generating fake
videos (in form DeepFakes, used for fake news dissemina-
tion). Although the use of GANs for 2D images has been
explored widely in the past, we further test the potential of
GANSs in the realm of 3D objects in this project. We lever-
age recent advancements in training GANSs, in form of cy-
cle consistency loss, to optimize our network to apply style
transfer to 3D objects.

2. Related Work

3D model generation has received significant attention
in the past. Early attempts at 3D model generation mostly
focused on template-based solution that used union or mod-
ification of existing models [3, 1] or the use of RGB im-
ages and depth mapping to generate 3D models from im-
ages [5, 4]. However with the advent and success of deep
learning, the use of GANs for 3D object generation pro-
vided a new platform and many recent stusides have ex-
plored this [8, 10, 9, 7]. The basic goal is to use creative
power of generative adversarial networks to understand the
details of 3D objects and generate new 3D objects from the
learned distributions. GAN consists of a generator model
G and a discriminator model D. Generator model generates
new samples, whereas Discriminator model takes real and
generated samples and tries to distinguish real ones from
generated ones. Generator and discriminator are trained si-
multaneously so that while the generator learns to generate
better samples, the discriminator becomes better at distin-
guishing samples, resulting in an improved sample genera-
tion performance at the end of the training.

Style transfer has emerged as a useful application for
neural networks where texture of a set of images new im-
ages of (usually artworks) is applied to images from other
domain to produce high perceptual quality images that
blend them together such that the input image is trans-
formed to look like the set of content images.

A recent study [1 1] explored the use of GANSs for style

transfer of 2D images with great success, especially when
paired training data is not available. Their approach intro-
duces cycle-consistency to GANs. Cycle consistency dic-
tates that if we have a translator G : X -> Y and another
translator F : Y -> X, then G and F should be inverses of
each other, and both mappings should be bijections.

3. Our Solution

3.1. Dataset

We turn to the Shapenet dataset [2] for our source of 3D
models. The full dataset covers 55 common object cate-
gories with about 51,300 unique 3D models. We represent
shapes in voxel space, represented as 3D occupancy grids
of size 64 x 64 x 64. Some samples from the dataset are
shown below in Figure 1.
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Figure 1. Example objects from the chair, sofa, car, and airplane
object classes. We attempt to learn mappings between chairs and
sofas, and between cars and airplanes.

3.2. Objective
3.3. Adversarial Losses

Our objective is to learn mappings between two domains
X and Y given training examples {z; € X}, {y; € Y} M.
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Figure 2. CycleGAN setup. Our objective is to learn mappings
G: X —Yand F:Y — X in adversarial fashion.

We denote the two mappings G: X — Y and F : Y — X,
as shown in Figure 2. Each mapping is trained in adver-
sarial fashion with a corresponding discriminator for each
domain, Dx and Dy . The adversarial loss for the mapping
G is given as:

Loan (G, Dy, X,Y) = Eyop,,,. () llog Dy (y)]
+ Eonpiora(@[log(l — Dy (G())],
1)

and the loss L an (F, Dx,Y, X) is defined analogously.

3.3.1 Cycle Consistency Loss

The adversarial objective given above leaves the mappings
between the two domains largely unconstrained: the map-
pings are free to map each source shape to a random target
shape, or even all source shapes to the same target shape.
In order to regularize this objective, the authors of [10]
introduce cycle consistency loss, the notion that the map-
pings should reproduce the input shape when composed, i.e.
F(G(x)) ~ x and G(F (y)) ~ y. The forces G to map each
unique element in X to a unique element in Y such that the
original shape may be reconstructed, and vice versa for F'.
Formally, cycle consistency loss is given as:

Leye(G F) = Eanpyora @[ F(G(2)) = ][]

2
+ Eympaara ) |GF(Y)) — yll1]-

Note that this loss is the L1 norm rather than an additional

adversarial loss on the reconstruction; the authors reported

improved performance with this metric in preliminary ex-

periments.

3.4. Full Objective

The full objective is given as:

E(GvFaDX7DY) - EGAN(GaDY7XaY)
+£GAN(F7DX7KX) (3)
+ Aeye(G, F).

3.5. Model

The architecture we build is similar to that of cycleGAN
[10] but substitutes the generator model from 3DGAN [9].
Below, we briefly discuss the constituent models of these
architectures.

The structure of 3DGAN is similar to that of the standard
GAN; however, 3DGAN makes use of 3 dimensional con-
volution and deconvolution in place of the 2 dimensional
convolution and deconvolution present in the generator net-
work [6] (see Figure 3).

The cycleGAN archicture makes use of two generator dis-
criminator pairs. The first generator, G, takes voxel grids
from distribution X and outputs 3’ voxel grids of the same
dimension as x. Similarly, the second generator, F', takes
voxel grids y from distribution Y and outputs z’. The dis-
criminator model is the same as the one used in the 3DGAN
architecture (See Figure 2).
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Figure 3. 3DGAN generator architecture

3.6. Training details

See Table 1 for an enumeration of the training experi-
ments. Training experiments were ran on Tesla K80 or Tesla
T4 GPU’s. See Table 1 for the training parameters for each
experiment. Two sets of mappings were attempted: chairs
to/from couches and planes to/from cars. These taxonomy
classes were chosen primarily because of the large num-
ber of available examples ( > 3000 examples per class) and
the relative visual similarity between source and destination
classes.

The authors of [10] replace the the standard adversarial
negative log-likelihood loss with least squares loss, citing
improved training stability. To investigate the effect of dif-
ferent loss functions, we attempted training our models with
the standard objective (BCE) as well as least absolute devi-
ation (L1) loss (see Table 1).
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Figure 4. Reconstructed chair

Fake chairs
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Figure 6. Reconstructed couch

Figure 7. Fake couches

Experiments
No. | bs dr glr
1 16 le-4 Se-4
2 8 le-4 2.5e-3 | 4045 || BCE | B
3 8 le-5 2.5e-3 | 6000 || L1 A
4 6 le-4 Se-4 500 L1 B
Table 1. Experiment Parameters. See the following legend for
the symbols in the table. bs: batch size, d_Ir: discriminator learn-
ing rate, g_Ir: generator learning rate, ntrain: number of training
examples, loss[L1]: least absolute loss, loss[BCE]: binary cross
entropy loss,type[A]: chairs to couches, type[B]: planes to cars

ntrain || loss | type
6000 || L1 A

4. Results
4.1. Chairs to Couches

Figures 4-7 plots selective results for one of our Chair
to Couches model attempt (Experiment 2). We observed
the Generator and Discriminator accuracy to be climbing
close to 1 fairly quickly for the default learning rates and
this prompted us to use lower learning rates (listed in the
table). Through trial and error, we found our batch size to
be limited by GPU memory and 16 being the highest batch
size the 12GB memory of GPU was able to support. We
used Least absolute deviations (LL1) as the loss function in
this experiment. As it can be seen in Figures 4-7, our net-
work is able to produce fake chairs and couches with some
success. We note the reconstruction of couches appears to
yield the mean couch object: the occupied space in the re-

constructed samples is filled in nearly all couch datapoints,
since couches have consistent geometry. Surprisingly, re-
construction for chair produced empty results. Our intuition
is that chairs have less consistent geometry: a given voxel
is more likely to be empty than full across the dataset, and
therefore the mean chair sample is an empty voxel grid.

4.2. Planes to Cars Model

In addition to training the 3D chairs and couches model,
we also attempted to train a planes and cars model. For this
particular run, we set the discriminator loss to 1 — e4, used
a batch size of 6, used least absolute deviation loss as the
objective function. The results were as follows. Generator
A, which was expected to produce a car-like output, con-
verged to structures that look car-like (See Appendix Table
3 Experiment 4). Generator B, expected to output a plane-
like output, produced a nearly empty volume. Similarly
to the couch reconstruction result above, the reconstructed
cars resemble the mean car sample in the dataset. This may
additionally be due to the empty grids (fake planes) from
which the reconstructed cars where generated. While these
results were unexpected, they demonstrate that the mapping
in question can be learned. We hypothesize that the source
of these results is the high loss penalization of the recon-
struction generators (A4 = 10, A = 10) which attempt to
minimize loss by converging to degenerate mean represen-
tations of the their intended outputs. As such, we attempted
lower weights on the reconstructions. The results of this
experiment is shown in Table 3.



5. Discussion

A few interesting insights that we were able to make
gather from the runs that we did on training our model with
different hyperparameters are as follows:

e Comparison of Experiment 2 and 3 showed that low-
ering the learning rate of the discriminator by 10 times
greatly improved the construction of fake images of
the domain Y. In case of the aforementioned experi-
ments, domain Y was couches. Lowering the learning
rate helped since we believed that it travelled slowed
toward the downward gradient and did not miss any
local minimas.

e The configuration of parameters show in table | was
run the earliest by us. The results of experiment 2
and 1 can be visualised in the appendix. Experiment
2 generated nearly empty voxel grid representations
for domain Y(couches) which led us to question if the
batch sizes were an impedance is producing better re-
sults therefore we setup up experiment 1 with batch
size of 16 since our Tesla K80 GPU supported 24GB
of memory and as it turns out this helped in smoothing
out back propagation, leading to generation of better
3-D representation of couches.

e While running the experiments we noticed better re-
sults with least absolute loss function as compared to
the Binary Cross entropy. This outcome was in accor-
dance with the statement of the authors of cycle GAN
[10].

6. Conclusion

In this paper we explored style transfer in 3D using 3D
generative adversarial networks. We combined CycleGAN
[10] and 3DGAN [9]. We observed that our model was
fairly successful in learning forward mappings between do-
mains, but the reconstruction of the original domain con-
verged to the mean distribution of the representative cate-
gories.
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A. Appendix
A.1. Visualization of Results

The figures below show additional runs of our system
with various hyperparameters. See Table 1 for hyperparam-
eters.

A.2. Contributions of Team Members

Contributions from our team members were remarkably
even. Together we explored datasets, setup GCP infrastruc-
ture, and wrote code for building and training our 3Dcycle-
GAN. Independently, we each ran several experiments and
shared results with the group as a whole. Finally, each team
member contributed various sections of the written report,
drafting as well as editing.



Table 2. Visualisations for Experiment 1

fake chair reconstructed chairs

Table 3. Visualisations for Experiment 3

fake chair reconstructed chairs

Table 4. Visualisations for Experiment 4

fake planes

fake cars




